Intergenerational Transmission of Occupational Class and Status Attainment at Entry into the Labour Market: Argentina, Cohorts 1924-1994. Estimated with a Conditional Multinomial Logistic Regression Model

Harry BG Ganzeboom, Department of Sociology, VU University Amsterdam. E-mail: <u>harry.ganzeboom@gmail.com</u>

Jorge Raul Jorrat, Gino Germani Institute, University of Buenos Aires. E-mail: rjorrat@gmail.com

Paper to be presented at the European Consortium for Sociological Research, Barcelona (ES), September 12-14, 2024.

Earlier presentations:

- July 18 2024, Gino Germani Institute, Buenos Aires AR.,
- August 28-29 2024, Cambridge Stratification Seminar, Stirling UK.

Summary

Argentina is a particularly interesting case for the comparative study of social reproduction and social mobility (Jorrat & Marques-Perales, 2022). The country is almost unique in being on a steady downward slope from riches to rags. In the early 20th century Argentina was among the top-10 wealthiest countries in the world, due to its immense agricultural exports and early industrial development, which at the time made the country a major attraction to immigrants from then impoverished Southern Europe. Since that time Argentina has been in a steady downward development, punctuated by eight national bankruptcies between 1930 and 2002, and the country finds itself now in the middle ranks of developing economies, with a per capita national income of about 25% of the wealthy OECD countries.

Standard modernization theory would lead to the expectation that the permanent economic crisis has produced a rigidification of the social class structure. Despite the pioneering early work of Gino Germani (early 1960's) and its obvious relevance, Argentina is at present largely absent from international comparisons of social stratification and social reproduction (but see Jorrat et al., 2024). In this paper we aim to mend this gap by investigating trends in intergenerational occupational class reproduction and status attainment in first jobs for cohorts born between 1924 and 1994.

We have brought together eight surveys (among them the 1960 Germani survey) with data on first and father's occupation, that allow us to compare cohorts that entered the labour market between 1930 and 2020. The eight surveys are heterogeneous by sample coverage and measurement strategies, but we overcome this by employing survey quality controls. We distinguish 10 occupational class categories, based in 11 major group of the International Classification of Occupations ISCO-88/08, and alternatively the widely used EGP7 typology of social class, and study the pattern of association with the Hauser-Goodman [HG] multiplicative scaled-association model, that we incorporate in a conditional logistic regression model, that makes it possible to add individual level covariates and address indirect effects (FOCC \rightarrow EDUC \rightarrow OCC1) as well as confounding by the survey controls (Hendrickx & Ganzeboom, 1998; Dessens et al., 1996).

The HG model compresses the association pattern into two sociologically meaningful parameters: IMM, the excess density on the diagonal of the mobility tables, and U, the scaled uniform association parameter that models the transmission of social class among the intergenerationally mobile. We study these parameters by entry cohort for men and women separately and jointly, and with and without correction for survey effects. By applying the scaling both to ISCOCAT and EGP7, we can judge the relative effectiveness of the two class schemes.

Our preliminary results rebut the expectation of a growing rigidification of Argentina: in fact, there is a trend towards more (relative) mobility and this trend become more pronounced when the appropriate survey controls are taken into account. The trend towards more relative mobility is most pronounced on the diagonal (IMM) but is also visible off-diagonal. When examined in an indirect effects model, the primary channel of increased relative mobility is the indirect one, via education.

References

- Dessens, Jos AG, Wim Jansen, Harry BG Ganzeboom, and Peter GM Van der Heijden. 2003. "Patterns and Trends in Occupational Attainment of First Jobs in the Netherlands, 1930-1995: Ordinary Least Squares Regression versus Conditional Multinomial Logistic Regression." Journal of the Royal Statistical Society: Series A (Statistics in Society) 166 (1): 63–84. <u>https://doi.org/10.1111/1467-985X.00259</u>.
- Hendrickx, John, and Harry BG Ganzeboom. 1998. "Occupational Status Attainment in the Netherlands, 1920-1990 A Multinomial Logistic Analysis." *European Sociological Review* 14 (4): 387–403. https://doi.org/10.1093/oxfordjournals.esr.a018246.
- Jorrat, Jorge Raúl, Pablo Dalle, Sandra Fachelli, and Manuel Riveiro. 2024. "Historical Evolution of Intergenerational Class Mobility and Educational Effects in Urban Argentina: 1960–2017." *Research in Social Stratification and Mobility* 89 (February): 100868. https://doi.org/10.1016/j.rssm.2023.100868.
- Jorrat, Jorge Raúl, and Ildefonso Marqués-Perales. 2022. "Argentina Exceptionalism: Social Mobility and the Reversal of Development in Argentina." *International Journal of Sociology* 52 (4): 284–307. https://doi.org/10.1080/00207659.2022.2089805.

	ISCO major groups											Tatal
	0	1000	1300	2000	3000	4000	5000	7000	8000	9000	9200	Total
.0 Germani 1960	56	30	53	74	127	328	148	624	0	265	202	1907
2.0 CEDOP - UBA, 1995	0	2	5	97	141	362	275	301	246	420	76	1925
7.0 CEDOP-0BA, 2007, ISSP 2006, 2007	4	3	2	66	249	431	625	295	316	763	89	2843
9.0 CEDOP-UBA, 2010, ISSP 2009	0	2	2	54	73	109	199	129	92	231	79	970
11.0 EDSA-UCA, 2010 13.0 Chávez Molina, Ipar - IIGG-UBA, 2013 15.0 IIGG-UBA, 2016	17	7	10	120	367	555	1352	724	384	1010	199	4745
	1	4	7	51	33	121	172	66	54	174	10	693
	3	13	21	95	52	156	221	140	99	203	39	1042
18.0 Covid 2021	18	14	113	355	220	513	1376	597	205	1079	180	4670
	99	75	213	912	1262	2575	4368	2876	1396	4145	874	18795

Table 1: Distribution of first job categories across surveys

Table 2: Birth cohorts by survey

	COHORT											Tatal
	1924	1945	1952	1958	1962	1968	1972	1977	1981	1986	1994	Total
.0 Germani 1960	1907	0	0	0	0	0	0	0	0	0	0	1907
2.0 CEDOP - UBA, 1995	592	355	234	187	198	191	130	38	0	0	0	1925
7.0 CEDOP- UBA, 2007, ISSP 2006, 2007	78	440	360	299	338	370	300	368	232	58	0	2843
9.0 CEDOP- UBA, 2010, ISSP 2009	53	128	106	83	105	79	91	113	76	104	32	970
11.0 EDSA- UCA, 2010	210	449	406	436	483	383	350	570	593	623	242	4745
13.0 Chávez Molina, Ipar - IIGG-UBA, 2013	6	20	77	79	116	81	92	106	116	0	0	693
15.0 IIGG-UBA, 2016	0	0	99	136	127	110	122	136	107	138	67	1042
18.0 Covid 2021	0	80	233	242	354	419	385	438	434	643	1442	4670
	2846	1472	1515	1462	1721	1633	1470	1769	1558	1566	1783	18795

Note: in our analysis we use 20 cohorts

	<u>B</u>	<u>z</u>												
imm0000	1.788	4.5	1.560	3.9	1.897	4.7	1.875	4.7	1.870	4.7	1.789	4.4	1.789	4.4
imm1000	2.669	10.7	1.836	7.2	2.087	8.1	2.393	9.2	2.028	7.9	2.232	8.6	2.232	8.6
imm1300	1.750	9.6	1.566	8.5	1.887	10.0	1.864	9.8	1.861	9.8	1.779	9.3	1.779	9.3
imm2000	1.538	17.2	-0.399	-3.8	0.022	0.2	0.122	1.0	0.028	0.3	0.126	1.1	0.124	1.1
imm3000	0.686	7.1	0.159	1.6	0.510	4.9	0.501	4.6	0.480	4.5	0.410	3.8	0.409	3.8
imm4000	0.745	10.9	0.634	9.2	0.989	12.4	0.787	9.5	0.963	11.9	0.706	8.4	0.705	8.4
imm5000	0.332	6.3	0.295	5.5	0.662	9.7	0.599	8.6	0.636	9.2	0.522	7.4	0.522	7.4
imm7000	0.760	16.5	0.709	15.1	1.069	17.2	0.977	15.5	1.043	16.5	0.904	14.1	0.903	14.0
imm8000	0.696	9.9	0.618	8.7	1.007	12.1	0.942	11.2	0.980	11.6	0.862	10.1	0.861	10.1
imm9000	0.650	12.0	0.373	6.8	0.760	10.7	0.601	8.3	0.735	10.3	0.528	7.2	0.528	7.2
imm9200	2.293	30.7	2.045	26.2	2.316	27.7	1.965	23.3	2.288	27.0	1.882	22.1	1.880	22.1
imm_cohx					-0.636	-8.7	-0.518	-6.8	-0.590	-7.7	-0.386	-4.9	-0.385	-4.9
zod			0.355	30.4	0.355	30.4	0.201	15.3	0.394	18.0	0.353	13.5	0.351	13.2
zod_cohx									-0.070	-2.1	-0.257	-6.7	-0.252	-6.4
zed							0.615	47.3			0.621	47.6	0.634	23.5
zed_cohx													-0.024	-0.5

Table 3: Stepwise estimates of immobility and mobility association parameters by cohort. Conditional logistic regression model with Hauser-Goodman parameters.

Source: eight surveys, 1960-2021, N = 17307 men and women. Origins, destinations and education are Z-standardized. Cohx ranges between 0 and 1. B is statistically significant (p < .05, two-tailed) if |z| > 1.96.